On cubic s-arc transitive Cayley graphs of finite simple groups

نویسندگان

  • Shang Jin Xu
  • Xin Gui Fang
  • Jie Wang
  • Ming Yao Xu
چکیده

For a positive integer s, a graph Γ is called s-arc transitive if its full automorphism group AutΓ acts transitively on the set of s-arcs of Γ . Given a group G and a subset S of G with S = S−1 and 1 / ∈ S, let Γ = Cay(G, S) be the Cayley graph of G with respect to S and G R the set of right translations of G on G. Then G R forms a regular subgroup of AutΓ . A Cayley graph Γ = Cay(G, S) is called normal if G R is normal in AutΓ . In this paper we investigate connected cubic s-arc transitive Cayley graphs Γ of finite non-Abelian simple groups. Based on Li’s work (Ph.D. Thesis (1996)), we prove that either Γ is normal with s ≤ 2 or G = A47 with s = 5 and AutΓ ∼= A48. Further, a connected 5-arc transitive cubic Cayley graph of A47 is constructed. © 2004 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5-Arc transitive cubic Cayley graphs on finite simple groups

In this paper, we determine all connected 5-arc transitive cubic Cayley graphs on the alternating group A47; there are only two such graphs (up to isomorphism). By earlier work of the authors, these are the only two nonnormal connected cubic arc-transitive Cayley graphs for finite nonbelian simple groups, and so this paper completes the classification of such non-normal Cayley graphs.

متن کامل

On the eigenvalues of normal edge-transitive Cayley graphs

A graph $Gamma$ is said to be vertex-transitive or edge‎- ‎transitive‎ ‎if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$‎, ‎respectively‎. ‎Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$‎. ‎Then, $Gamma$ is said to be normal edge-transitive‎, ‎if $N_{Aut(Gamma)}(G)$ acts transitively on edges‎. ‎In this paper‎, ‎the eigenvalues of normal edge-tra...

متن کامل

FINITE s-ARC TRANSITIVE CAYLEY GRAPHS AND FLAG-TRANSITIVE PROJECTIVE PLANES

In this paper, a characterisation is given of finite s-arc transitive Cayley graphs with s ≥ 2. In particular, it is shown that, for any given integer k with k ≥ 3 and k 6= 7, there exists a finite set (maybe empty) of s-transitive Cayley graphs with s ∈ {3, 4, 5, 7} such that all s-transitive Cayley graphs of valency k are their normal covers. This indicates that s-arc transitive Cayley graphs...

متن کامل

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

Arc-transitive and s-regular Cayley graphs of valency 5 on Abelian groups

Let G be a finite group, and let 1G 6∈ S ⊆ G. A Cayley di-graph Γ = Cay(G,S) of G relative to S is a di-graph with a vertex set G such that, for x, y ∈ G, the pair (x, y) is an arc if and only if yx−1 ∈ S. Further, if S = S−1 := {s−1|s ∈ S}, then Γ is undirected. Γ is conected if and only if G = 〈s〉. A Cayley (di)graph Γ = Cay(G,S) is called normal if the right regular representation of G is a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005